Structural basis for recognition of 2',5'-linked oligoadenylates by human ribonuclease L.
نویسندگان
چکیده
An interferon-induced endoribonuclease, ribonuclease L (RNase L), is implicated in both the molecular mechanism of action of interferon and the fundamental control of RNA stability in mammalian cells. RNase L is catalytically active only after binding to an unusual activator molecule containing a 5'-phosphorylated 2',5'-linked oligoadenylate (2-5A), in the N-terminal half. Here, we report the crystal structure of the N-terminal ankyrin repeat domain (ANK) of human RNase L complexed with the activator 2-5A. This is the first structural view of an ankyrin repeat structure directly interacting with a nucleic acid, rather than with a protein. The ANK domain folds into eight ankyrin repeat elements and forms an extended curved structure with a concave surface. The 2-5A molecule is accommodated at a concave site and directly interacts with ankyrin repeats 2-4. Interestingly, two structurally equivalent 2-5A binding motifs are found at repeats 2 and 4. The structural basis for 2-5A recognition by ANK is essential for designing stable 2-5As with a high likelihood of activating RNase L.
منابع مشابه
RNase L: its biological roles and regulation.
2'-5'oligoadenylate-dependent ribonuclease L (RNase L) is one of the key enzymes involved in the function of interferons (IFNs), a family of cytokines participating in innate immunity against viruses and other microbial pathogens. Upon binding with its activator, 5'-phosphorylated, 2'-5' linked oligoadenylates (2-5A), RNase L degrades single-stranded viral and cellular RNAs and thus plays an im...
متن کاملThe Structure of Host-Pathogen Interactions
Upon infection, cellsof higher vertebratesproduce interferons (IFNs),whichactivate variousantiviral programs in the infectedcell andsurroundingcells, thus limiting the spreadof infection.Oneof these antiviral mediators is RNase L, an endoribonuclease that cleaves viral and cellular RNA on demand. RNase L is activated by 2’,5’-linked oligoadenylates (2-5A), products of IFN-inducible 2-5A synthet...
متن کاملA Study of the Interferon Antiviral Mechanism: Apoptosis Activation by the 2–5A System
The 2-5A system contributes to the antiviral effect of interferons through the synthesis of 2-5A and its activation of the ribonuclease, RNase L. RNase L degrades viral and cellular RNA after activation by unique, 2'-5' phosphodiester-linked, oligoadenylates [2-5A, (pp)p5' A2'(P5'A2')]n, n >=2. Because both the 2-5A system and apoptosis can serve as viral defense mechanisms and RNA degradation ...
متن کاملNucleoside modifications in RNA limit activation of 2′-5′-oligoadenylate synthetase and increase resistance to cleavage by RNase L
The interferon-induced enzymes 2'-5'-oligoadenylate synthetase (OAS) and RNase L are key components of innate immunity involved in sensory and effector functions following viral infections. Upon binding target RNA, OAS is activated to produce 2'-5'-linked oligoadenylates (2-5A) that activate RNase L, which then cleaves single-stranded self and non-self RNA. Modified nucleosides that are present...
متن کاملDoxifluridine-conjugated 2-5A analog shows strong RNase L activation ability and tumor suppressive effect.
RNase L is activated by 2',5'-oligoadenylates (2-5A) at subnanomolar levels to cleave single-stranded RNA. We previously reported the hypothesis that the introduction of an 8-methyladenosine residue at the 2'-terminus of the 2-5A tetramer shifts the 2-5A binding site of RNase L. In this study, we synthesized various 5'-modified 2-5A analogs with 8-methyladenosine at the 2'-terminus. The doxiflu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 23 20 شماره
صفحات -
تاریخ انتشار 2004